23 Dec 2012 yeupou   » (Master)

Setting up a silent/low energy consumption home server (DHCP/DNS/SMB/UPnP)

Most users are probably fine with their ISP modem/box that even provides an hard disk. But having it’s own home server gives full control over the process and it’s not something utterly frivolous: no storage space real limit (except budget), finely tuned firewall, etc. In the past, it was at the expense of silence, energy consumption and space, but no longer, as described here.

Hardware setup:

The hardware is the following:
- board (APU) Intel DN2800MT
- RAM: 2 x 2 Go PC8500 DDR3 SODIMM
- Hard drive: Western Digital WD Green 3,5″ – SATA III 6 Gb/s – 2 To (Caviar)
- Secondary ethernet: StarTech.com ST1000SMPEX (Mini PCI-E)
- Wifi: TP-Link TL-WDN4800 (PCI-E)
+ a laptop adapter (16V, 4A)
+ a small case

The APU itself have a thermal design power (TDP) inferior to 10W. The hard drive is of the “Green” typen (RPM is lower than usual, etc). It’s important to note the RAM is of the SO-DIMM type (usually for laptops) PC8500 (max frequency supported by this board/CPU) and an laptop power charger/adapter is necessary instead of a regular power supply unit. Any case designed for the mini-ITX form factor could do. Low energy consumption, silent and small.

I was, actually, looking towards Sapphire Mini xxxx hardware at first, but it’s quite painy to get it shipped. So I went instead for the Intel Nano based hardware, despite its obvious drawbacks, which are supporting SATA II instead of 3, the SODIMM 4Gb RAM max and being known to be poorly supported on the target system, which is Debian GNU/Linux. I actually don’t care much for the GPU support, 4 Gb is more than enough for a home server and SATA II acceptable enough, so it should be fine anyway.

(Obviously, you should plug a hub on the secondary ethernet otherwise you’ll only be able to connect one box over ethernet)

Software setup:

Picking softwares:

Most obvious: we’ll run Debian stable on it, so to say Wheezy, the about-to-be-released-and-frozen one. The stable model in itself makes this distro the best choice for a server: this is stable and kept secure over time.

It’s supposed to work with an heterogenous network: GNU/Linux, MS Windows, over ethernet or wireless. So we’ll want:
- OpenSSH as secure shell, for the administrator
- any dhcpd server to provide IPs on the fly
- Samba for networked filesystems – and only, as we want each box to keep it’s original setup and not getting specific
- Bind to act as DNS cache and manage the domain
- Nginx as http server to provide basic sysinfo (phpsysinfo) and basic sysadmin (mostly: reset Samba passwords and connected wireless devices surveillance)
- transmission-daemon plus my torrent-watch.pl script to provide a networked BitTorrent client
- minidlna to make files available to non computer networked devices

Start with Debian netinst base install:

Obviously we’ll want some SWAP space. 2 Gb should be more than enough. Then we’ll want three ext4 filesystems. One for user data, one for the system, one for a system copy, as fallback. If we had two different disk, obviously the system copy would be the second one.

We’ll start the basic debian installation with that in mind: we’ll anyway just install the debian base stuff with OpenSSH.





Setting up basic functionalities/networking after reboot:

First, we’ll install some useful utilities:

apt-get install lm-sensors hddtemp cpufrequtils debfoster etckeeper localepurge
ethtool emacs23-nox ntp wget

Regarding sensors, you should configure hddtemp to run as a daemon listening on and run:


At this point, network devices should be known to the system. We have quite usual hardware so correct modules should already be loaded. lspci should return:

01:00.0 Ethernet controller: Intel Corporation 82574L Gigabit Network Connection
02:00.0 Network controller: Atheros Communications Inc. AR9300 Wireless LAN adaptor (rev 01)
03:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller (rev 06)

Edit the NAME strings in /etc/udev/rules.d/70-persistent-net.rules in order to have eth0 being the internet device, eth1 and wlan1 the intranet ones, for clarity sake. You may unload and reload modules of these devices in order for them to get their definitive name.

We’ll use hostapd to provide Wifi access.

apt-get install hostapd




## base

## wifi mode

## access with WPA PSK

# hw address filter (relaxed, as it is not real security)

touch /etc/hostapd/hostapd.deny

(this enable WPA2 access, if you want also WPA1, you must set wpa=3 and uncomment wpa_pairwise)

Then we’ll configure the network, defining a different subnet for wired and wireless connectivity. Some tutorials on the web propose to bridge the wireless to the wired. We won’t do that, we actually want to be able to easily distinguish the source of any request. Regarding security, the safe bet is to assume that wireless is always on the verge of getting cracked, so it must be kept confined.
editing /etc/network/interface:

# internet
allow-hotplug eth0
iface eth0 inet dhcp

# intranet (wired) auto eth1 iface eth1 inet static address netmask broadcast network # intranet (wireless) #iface eth2 inet manual auto wlan1 iface wlan1 inet static address netmask broadcast network # EOF

We need a working dhcp daemon, able to dynamically register new boxes:

apt-get install isc-dhcp-server

In /etc/default/isc-dhcp-server:

INTERFACES="eth1 wlan1"

In /etc/dhcp/dhcpd.conf:

option domain-name "mynetworkname.ici";
option domain-name-servers;
option routers;

log-facility local7;

# wired
subnet netmask {

# wireless
subnet netmask {
option routers;

(it’s best to add, as fallback, to the domain-name-servers option the defaults DNS provided by your ISP, as shown in /etc/resolv.conf)

The dhcp client must be tuned a bit, /etc/dhcp/dhclient.conf:

prepend domain-name-servers
supersede domain-name "mynetworkname.ici";

We obviously need ip forwarding, editing /etc/sysctl.conf:


and also immediately doing a:

echo 1 > /proc/sys/net/ipv4/ip_forward

We also need iptables

apt-get install iptables-persistent
iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
/etc/init.d/iptables-persistent save

(I actually reused a perl script that also does some nice firewalling instead of simply doing this)

ifup eth1
ifup wlan1
invoke-rc.d hostapd restart
invoke-rc.d isc-dhcp-server restart

At this point, you should be able to log in with SSH on a distant box.

Provide DNS cache:

apt-get install bind9

Set up forwarders with your ISP’s DNS (as in /etc/resolv.conf) in /etc/bind/named.conf.options:

forwarders {

You need to create zones as you wish in /etc/bin/named.conf.local:

zone "mynetworkname.ici" {
type master;
notify no;
file "/etc/bind/db.mynetworkname.ici";
allow-update { key dhcpupdate; };

zone "0.10.in-addr.arpa" {
type master;
notify no;
file "/etc/bind/db.10.0.0";
allow-update { key dhcpupdate; };
cd /etc/bind && cp db.local db.mynetworkname.ici


$TTL    64800
@           IN      SOA      gate.mynetworkname.ici. root.mynetworkname.ici. (
2         ; Serial
604800         ; Refresh
86400         ; Retry
2419200         ; Expire
604800 )       ; Negative Cache TTL

IN      NS      nano.mynetworkname.ici.
mynetworkname.ici.                     IN      A
mynetworkname.ici.    IN    MX         10
nano        IN    A
gate            IN      CNAME   nano
cp db.255 db.10.0


; BIND reverse data file
@       IN    SOA    nano.mynetworkname.ici. root.mynetworkname.ici. (
1                     ; Serial
604800         ; Refresh
8600               ; Retry
2419200               ; Expire
604800 ) ; Negative Cache TTL

0.10.in-addr.arpa.         NS  nano.mynetworkname.ici.
1.0                        PTR nano.mynetworkname.ici.

Now we add support for dynamic updates:

cd /etc/dhcp
dnssec-keygen -a hmac-md5 -b 256 -n USER dhcpupdate


key dhcpupdate {
algorithm hmac-md5;

(the secret being the latest string of .key file we’ve just generated)


ddns-domainname "mynetworkname.ici";
ddns-rev-domainname "in-addr.arpa.";
ddns-update-style interim;
ignore client-updates;
update-static-leases on;

key dhcpupdate {
algorithm hmac-md5;
zone mynetworkname.ici. {
key dhcpupdate;
zone 0.10.in-addr.arpa. {
key dhcpupdate;

Restrict read access to files containing the secret key and restart all:

chmod o-r /etc/bind/named.conf.local
chmod o-r /etc/dhcp/dhcpd.conf
rm /etc/dhcp/Kdhcpupdate.*.key /etc/dhcp/Kdhcpupdate.*.private

invoke-rc.d isc-dhcp-server restart
invoke-rc.d bind9 restart

Put user data in place:

User data will go in /srv. So we’ll add a few symlinks, after mounting the partition.

mkdir /srv/home /srv/common
rm -r /home && ln -s /srv/home /home

We then add default dirs:

mkdir /srv/common/torrents /srv/common/download /srv/common/musique /srv/common/films /srv/common/temp
cd /srv/common && chmod a+w * -R

We’ll also make sure any new user get a ~/samba directory.

mkdir /etc/skel/samba

Make it accessible over Samba:

Users will access files with Samba: anonymous in r+w in common, user only in their ~/samba (we don’t allow direct access to ~/ to block any tampering with directories like ~/.ssh)

apt-get install samba libpam-smbpass


interfaces = eth1 wlan1
bind interfaces only = yes
security = user
invalid users = root
unix password sync = yes
pam password change = yes
map to guest = bad user

comment = Données protégées
path = /srv/home/%S/samba
writable = yes

comment = Commun
path = /srv/common
browseable = yes
public = yes
force group = users
force user = nobody
guest ok = yes
writable = yes

comment = clef USB, etc
path = /media
browseable = yes
public = yes
force group = users
force user = nobody
guest ok = yes
writable = yes

We also want to use unix passwords for Samba instead of having two passwords databases.


@include common-password

Make it accessible with UPnP-AV/DLNA:

apt-get install minidlna


rm -f /var/lib/minidlna/files.db
invoke-rc.d minidlna restart

Provide torrent client:

apt-get install transmission-daemon libtimedate-perl
invoke-rc.d transmission-daemon stop

mkdir /home/torrent
ln -s /srv/common/torrents /home/torrent/watch
usermod -d /home/torrent Debian-transmission

cd /usr/local/bin && wget https://github.com/yeupou/stalag13/raw/master/usr/local/bin/torrent-watch.pl && chmod +x torrent-watch.pl
cd /etc/cron.d && wget https://github.com/yeupou/stalag13/raw/master/etc/cron.d/torrent
cd /etc/cron.weekly && wget https://github.com/yeupou/stalag13/raw/master/etc/cron.weekly/torrent

edit /etc/transmission-daemon/settings.json

"alt-speed-down": 120,
"alt-speed-enabled": false,
"alt-speed-up": 1,
"blocklist-enabled": true,
"download-dir": "/srv/common/download",
"message-level": 0,
"peer-port-random-on-start": true,
"port-forwarding-enabled": true,
"rpc-authentication-required": false,
invoke-rc.d transmission-daemon start

And log rotation /etc/logrotate.d/torrent:

/srv/common/torrents/log {
rotate 2
su debian-transmission users

Provide basic info and management:

The following will provides reminders of upgrades to be performed.

apt-get install libapt-pkg-perl
cd /etc/cron.daily && wget https://github.com/yeupou/stalag13/raw/master/etc/cron.daily/apt-warn && chmod +x apt-warn
phpsysinfo : basic system infos

phpsysinfo : basic system infos

We’ll use phpsysinfo to provide an overview of the system and a homemade script to allow distant administration.

apt-get install nginx phpsysinfo php5-cgi spawn-fcgi libfcgi-perl mysql-server libemail-sender-perl
cd /etc/init.d && wget https://github.com/yeupou/stalag13/raw/master/etc/init.d/php-fcgi && chmod +x php-fcgi && update-rc.d php-fcgi defaults
wget http://nginxlibrary.com/downloads/perl-fcgi/fastcgi-wrapper -O /usr/bin/fastcgi-wrapper.pl && wget http://nginxlibrary.com/downloads/perl-fcgi/perl-fcgi -O /etc/init.d/perl-fcgi && chmod +x /usr/bin/fastcgi-wrapper.pl /etc/init.d/perl-fcgi && update-rc.d perl-fcgi defaults

mkdir /srv/www
ln -s /usr/share/phpsysinfo/ /srv/www/sysinfo



root /srv/www;
index index.html index.htm index.php index.pl;
autoindex on;
server_name localhost nano nano.mynetworkname.ici;

# restrict to local wired network
deny all;

# pass the  scripts to FastCGI server listening on
location ~ ^/sysinfo/(.*)\.php$ {
fastcgi_split_path_info ^(.+\.php)(/.+)$;
#       # NOTE: You should have "cgi.fix_pathinfo = 0;" in php.ini
fastcgi_index index.php;
include fastcgi_params;
location /sysadmin/index.pl {
fastcgi_index index.pl;
fastcgi_param  SCRIPT_FILENAME  $document_root$fastcgi_script_na\
include fastcgi_params;


cgi.fix_pathinfo = 0;


define('PSI_ADD_PATHS', '/bin,/usr/bin,/sbin,/usr/sbin');
define('PSI_BYTE_FORMAT', 'auto_binary');
define('PSI_SENSOR_PROGRAM', 'LMSensors');
define('PSI_HDD_TEMP', 'tcp');
define('PSI_SHOW_MOUNT_OPTION', false);
define('PSI_HIDE_FS_TYPES', 'tmpfs,usbfs,devtmpfs');
define('PSI_HIDE_DISKS', '/dev/disk/by-uuid/8f7f616e-9140-4876-890a-cd6abfde837\
define('PSI_HIDE_NETWORK_INTERFACE', 'lo,mon.wlan0');
define('PSI_SHOW_NETWORK_INFOS', true);
sysadmin : admin unix/samba passwords and watch wifi connections

sysadmin : admin unix/samba passwords and watch wifi connections

Follows the specific sysadmin web interface:

apt-get install passwdqc liburi-encode-perl libdata-password-perl libdbd-mysql-perl libemail-send-perl
cd /srv/www
mkdir sysadmin

cd /srv/www/sysadmin && wget https://raw.github.com/yeupou/calaboose.sysadmin/master/index.pl
cd /usr/local/bin && wget https://raw.github.com/yeupou/calaboose.sysadmin/master/sysadmin-update.pl
chgrp www-data /srv/www/sysadmin/index.pl
chmod +x /srv/www/sysadmin/index.pl /usr/local/bin/sysadmin-update.pl
chmod o-rwx /srv/www/sysadmin/index.pl /usr/local/bin/sysadmin-update.pl
mysql -e "CREATE DATABASE sysadmin"
mysql -e "CREATE TABLE sambaclients (ip_address varchar(32) NOT NULL default '0', user_name text NOT NULL, PRIMARY KEY (ip_address))" sysadmin
mysql -e "CREATE TABLE wificlients (hw_address varchar(32) NOT NULL default '0', status varchar(32) NOT NULL default 'S', PRIMARY KEY (hw_address), ip_address varchar(32), hostname varchar(128))" sysadmin
mysql -e "CREATE USER 'www-data'@'localhost'"
mysql -e "SET PASSWORD FOR 'www-data'@'localhost' = PASSWORD('kdkadkda')"
mysql -e "GRANT ALL ON sysadmin.* TO 'www-data'@'localhost'"


my $db_password = "kdkadkda";


my $db_password = "kdkadkda";

It requires a cronjob to be set up in /etc/cron.d/sysadmin:

* * * * * root /usr/local/bin/sysadmin-update.pl
invoke-rc.d nginx restart
invoke-rc.d php-fcgi restart
invoke-rc.d perl-fcgi restart

Both http://nano/sysinfo and http://nano/sysadmin should work. The sysadmin script allows to change, on-the-fly UNIX passwords. It means that anyone within the network

(note : the sysadmin interface is in French but the strings can easily be translated in English. Adding gettext support would have been overkill here)

Create backup system:

With only one disk, having a redundant system is not optimal. But it’s still an okay failsafe.

The following assumes you gave a label to your root partition, something like wd2Tdebian64 here. Create a filesystem on the backup partition:

mkfs.ext4 -L wd2Tdebian64backup /dev/sda7
mkdir /mnt/sysclone

Add /etc/cron.weekly/backup-system (based on https://github.com/yeupou/stalag13/blob/master/etc/cron.weekly/stalag13-backups):

if [ `hostname` != "nano" ]; then exit; fi

## system cloning
ignore="dev lost+found media proc run sys tmp"

# determines which partition is currently / by reading /etc/fstab
orig=`cat /etc/fstab | grep $sys | cut -f 1 | cut -f 2 -d = | sed 's/ //g'`
case $orig in
echo "Unable to determine whether we are currently using $sys or $bak, we found $orig. Exiting!"

# then proceed

# easy reminder of the last cloning run
date > /etc/.lastclone
echo "$orig > $dest" >> /etc/.lastclone
etckeeper commit "cloning system from $orig to $dest" >/dev/null 2>/dev/null

# mount clone system
if [ ! -d $mount ]; then exit; fi
mount -L $dest $mount

# set up ignore list
for dir in $ignore; do
touch /$dir.ignore

# do copy
for dir in /*; do
if [ -d $dir ]; then
if [ ! -e $dir.ignore ]; then
# update if not set to be ignored
/usr/bin/rsync --archive --one-file-system --delete $dir $mount/
# otherwise just make sure the directory actually exists
if [ ! -e $mount/$dir ]; then mkdir $mount/$dir; fi
rm $dir.ignore

# update filesystem data
sed -i s/^LABEL\=$orig/LABEL\=$dest/g $mount/etc/fstab

# make system bootable (use --force: gpt partition table)
/usr/sbin/grub-mkdevicemap 2>/dev/null
/usr/sbin/update-grub 2>/dev/null
/usr/sbin/grub-install --force `blkid -L $orig | tr -d [:digit:]` >/dev/null 2>/dev/null

# (sleep to avoid weird timeout after rsync)
sleep 10s

# then cleanup
umount $mount
fsck -a LABEL=$dest > /dev/null

## EOF

Sets mails and restricts SSH access:

We activate exim4 for direct SMTP (and make sure the ISP does not block the relevant traffic) with the command:
dpkg-reconfigure exim4-config

Then we want some specific SSH access model. We already set up the sysadmin interface to change users password – both Samba and unix. But we actually have only one admin here. He’s own account will be the only one given SSH access. No root direct access. And he’ll be able to connect with a password only from wired intranet (eth1). Otherwise, internet (eth0) or wireless intranet (wlan1) will require a pair of SSH keys. To achieve this, we’ll actually restrict SSH to members of the staff unix group (just in case, at some point, we want to add a second one).

To achieve this easily, will plug OpenSSH into xinetd.

We have a few terminals open on the server. We shut SSH down (opened sessions wont be affected) and forbid the init script to start it anymore:

invoke-rc.d ssh stop
touch /etc/ssh/sshd_not_to_be_run

We change a bit the default configuration in /etc/ssh/sshd_config:

PermitRootLogin no
X11Forwarding no
AllowGroups staff
PasswordAuthentication no

We add the relevant user to the group:

adduser thisguy staff

Then we set up xinetd to run it:

apt-get install xinetd

Edit /etc/xinetd.d/ssh (replace IP OF ETH0 as provided by ifconfig):

# To work, sshd must not run by itself, so /etc/ssh/sshd_not_to_be_run
# should exists

# only from local wired network
service ssh
socket_type     = stream
protocol        = tcp
wait            = no
user        = root
bind            =
only_from    =
server          = /usr/sbin/sshd
server_args     = -i -o PasswordAuthentication=yes
log_on_success  = HOST USERID

# from local wireless network
service ssh
socket_type     = stream
protocol        = tcp
wait            = no
user        = root
bind            =
only_from       =
server          = /usr/sbin/sshd
server_args     = -i
log_on_success  = HOST USERID

# from internet
service ssh
socket_type     = stream
protocol        = tcp
wait            = no
user        = root
bind            = IP OF ETH0
server          = /usr/sbin/sshd
server_args     = -i
cps             = 30 10
per_source    = 5
log_on_success  = HOST USERID


Then you can make a few test and see results in /var/log/auth.log.

At this point, you should realize that this perfectly working setup has an obvious drawback: if you’re wirelessly connected (subnet `ssh nano` will, thanks to the DNS, actually do a `ssh`. And per our xinetd rules, you’ll get kicked out, as we accept on this IP only clients from the same subnet ( So you’ll have to manually type ssh to be able to connect. We’ll add an iptable rule to fix this: we’ll say that whenever we try to connect to over ssh from wireless interface, we’ll redirect to same port. So we’ll do:

iptables -t nat -A PREROUTING -p tcp -i wlan1 --destination --dport 22 -j DNAT --to
/etc/init.d/iptables-persistent save

Reminder, need to be changed whenever the server is relocated:

(obviously you should not use any sample password provided in this page)

We avoided hardcoding IPs but it was not always possible. In case of an ISP/main network change, which usually implies IP changes, don’t forget to update:

/etc/bind/named.conf.option: ISP DNS IPs.
/etc/xinetd.d/ssh : Internet IP (eth0)

Disclaimer: this whole setup has been made to be maintainable by people that have not much experience in computer system administration – but enough to log in via SSH without being completely lost in limbo. As such, you’ll probably notice I made some tradeoff between security and easiness, for instance by providing in clear text the Wifi passphrase on the web sysadmin page. Anyway I think most important pieces are rock solid and secondary one does not matter much (Wifi is insecure by design, by concept I would even dare to say, using it is itself such an obvious tradeoff).

(this is still being tested, I may update this page soon; it’s likely I forgot to mention a few apt-get of perl packages required by the scripts; please mail me if you find any flaws or obvious issues with what is proposed here)

Syndicated 2012-12-23 22:43:00 from # cd /scratch

Latest blog entries     Older blog entries

New Advogato Features

New HTML Parser: The long-awaited libxml2 based HTML parser code is live. It needs further work but already handles most markup better than the original parser.

Keep up with the latest Advogato features by reading the Advogato status blog.

If you're a C programmer with some spare time, take a look at the mod_virgule project page and help us with one of the tasks on the ToDo list!