29 May 2008 salmoni   » (Master)

Python Consulting

This is an announcement that I will be doing Python consulting from now. My expertise covers Python, wxPython, NumPy and SQLAlchemy; and the primary area of my work is on numeric analysis / statistics, though of course you get a PhD in human-computer interaction thrown in if you want interfaces made.

If anyone has any Python work they would like help with, I can offer a discount on open source code. I can work internationally as long as requirements can be sent electronically. The best way to contact me as salmoni - at - gmail.com

Apart from that, all is well here in the Philippines! The coding on the new project is going well and I'm considering farming off the database viewer/importer tool as a separate component for database management. I'm not exactly sure what functionality would be necessary for this, but suffice to say that the basics should be easy to implement (and the middling / advanced stuff a nightmare!).

Factorial ANOVA of large sets

I've also solved all the problems concerning factorial analysis of variance for extremely large datasets (ie, those too large to fit into memory). I will crack on with this code now to get it done and to make an industrial quality heavy-weight data analysis tool. This will be open sourced in time, after testing anyway. The real problems that I have are a) getting hold of an environment (ie, a machine with a massive database on it), and b) getting comparison results, though SAS should be able to deliver on this. I understand that SPSS will face problems if the data are too big for memory; but SAS can work around this just like my code can.

Moore's Law makes this of decreasingly utility; but it's nice to have software that you know can handle any task.


I've also enquired about submitting an article to a Python journal about how to use the code module to implement an interactive interpreter and embed it within a Python program. This comes from work on the statistics program where I wrote one for quick debugging and found it so good that I extended it a little to be used as a permanent tool.

One problem we found is that when declaring and using a variable, a user would have to write:

x = newvar()



It would make more sense (to novices) to write


It does this now. What I did was override the code.InteractiveInterpreter.showtraceback method to catch NameErrors (which are risen when x is sent to newvar because x doesn't exist). Then the code works out the command and sends it again to the newvar method but with the x in quotes. It's minor stuff but less annoying to users.

And if a database has awkward variable names that are not valid variable names in Python, they cannot be used: so I added a catcher to showtraceback that catches AttributeErrors and tests to see if a string has been issued with a program method:

"Variable 1 (2000)".variance()

This would never work normally within Python without overriding the string class (which is another possibility). However, the catcher above can catch this attribute error and redirect the 'variance()' bit to the proper variable definition.

All this just means that the application is beginning to work around its users instead of demanding that they work around it.

I also added lots of alternative names for descriptive tests so:


all call the same function. This helps because when I've used a new statistics program, I have to find out the exact name for the functions. This way, I don't have to remember which one: I just pick a common one, and away I go! :-)

Latest blog entries     Older blog entries

New Advogato Features

New HTML Parser: The long-awaited libxml2 based HTML parser code is live. It needs further work but already handles most markup better than the original parser.

Keep up with the latest Advogato features by reading the Advogato status blog.

If you're a C programmer with some spare time, take a look at the mod_virgule project page and help us with one of the tasks on the ToDo list!